
Putting Rigid Bodies to Rest
HOSSEIN BAKTASH, Carnegie Mellon University, USA
NICHOLAS SHARP, NVIDIA Research, USA
QINGNAN ZHOU, Adobe Research, USA
KEENAN CRANE, Carnegie Mellon University, USA
ALEC JACOBSON, University of Toronto & Adobe Research, Canada

Fig. 1. We introduce a geometric model for the resting equilibria of rigid bodies. This model supports fast differential evaluation, enabling tasks such as the
inverse design of dice with prescribed probabilities. As shown in the photograph above, we design single dice that capture the statistics of other objects such
as the sum of a pair of ordinary dice (middle), or the number of heads from flipping two or three fair coins (front). We can also deform nonconvex shapes such
that their stable configurations exhibit dice-like probabilities; here, the kitten and armadillo models both have just three stable configurations with equal
probabilities.

This paper explores the analysis and design of the resting configurations of

a rigid body, without the use of physical simulation. In particular, given a

rigid body in R3, we identify all possible stationary points, as well as the

probability that the body will stop at these points, assuming a random initial

orientation and negligible momentum. The forward version of our method

can hence be used to automatically orient models, to provide feedback

about object stability during the design process, and to furnish plausible

distributions of shape orientation for natural scene modeling. Moreover, a

differentiable inverse version of our method lets us design shapes with target

resting behavior, such as dice with target, nonuniform probabilities. Here

we find solutions that would be nearly impossible to find using classical

techniques, such as dice with additional unstable faces that provide more

natural overall geometry.

Authors’ Contact Information: Hossein Baktash, Carnegie Mellon University, Pitts-

burgh, USA, hbaktash@andrew.cmu.edu; Nicholas Sharp, NVIDIA Research, Sea-

tle, USA, nmwsharp@gmail.com; Qingnan Zhou, Adobe Research, New York, USA,

qzhou@adobe.com; Keenan Crane, Carnegie Mellon University, Pittsburgh, USA,

keenanc@andrew.cmu.edu; Alec Jacobson, University of Toronto & Adobe Research,

Toronto, Canada, alecjacobson@adobe.com.

This work is licensed under a Creative Commons Attribution 4.0 International License.

© 2025 Copyright held by the owner/author(s).

ACM 1557-7368/2025/8-ART

https://doi.org/10.1145/3731203

From a technical point of view, our key observation is that rolling equi-

libria can be extracted from the Morse-Smale complex of the support function
over the Gauss map. Our method is hence purely geometric, and does not

make use of random sampling, or numerical time integration. Yet surpris-

ingly, this purely geometric model makes extremely accurate predictions

of rest behavior, which we validate both numerically, and via physical ex-

periments. Moreover, for computing rest statistics, it is orders of magnitude

faster than state of the art rigid body simulation, opening the door to inverse

design—rather than just forward analysis.

CCS Concepts: • Computing methodologies→ Shape analysis; Physical
simulation.

Additional Key Words and Phrases: Rigid Body, Static Equilibrium, Dice

ACM Reference Format:
Hossein Baktash, Nicholas Sharp, Qingnan Zhou, Keenan Crane, and Alec

Jacobson. 2025. Putting Rigid Bodies to Rest. ACM Trans. Graph. 44, 4 (Au-
gust 2025), 16 pages. https://doi.org/10.1145/3731203

1 Introduction
“Let it roll, baby, roll.” —Jim Morrison, Roadhouse Blues

Where will a rolling object come to rest? The equilibrium distri-

bution of orientation for rigid bodies is central to diverse physical,

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3731203
https://doi.org/10.1145/3731203

2 • Baktash, Sharp, Zhou, Crane, and Jacobson

functional, and aesthetic problems, yet in all its simplicity, comput-

ing this distribution with general-purpose simulation tools is not

straightforward. Even enumerating a complete set of equilibrium

states is challenging for conventional, simulation-based methods,

since it is prone to sampling error: equilibria which are improbable

or not well-separated may be overlooked when running random

trials. In general, analyzing the static behavior of a rigid body by

running a full dynamical simulation is time-intensive, prone to nu-

merical errors, and requires delicate parameter tuning (Section 4.1).

Obtaining a reliable distribution of equilibria is even harder, requir-

ing numerous trials just to obtain approximate statistics.

We adopt the philosophy that, from a statistical perspective, the

rest behavior of a rolling object is largely a function of its geometry

and little else—not so different from properties like center of mass

or moments of inertia.

In particular we assume that momentum is negligible, and that

dynamics hence follow the gradient of a gravitational potential.

This assumption enables us to analyze rolling via techniques from

computational geometry, rather than those from physical simulation.

Unlike a dynamic simulation, our method does not predict the final

resting pose of an object from a given initial height, orientation, and

momentum. Instead, it estimates the probability distribution over

stable resting configurations, based purely on geometry.

Of course, just as the rigidity assumption ignores certain phys-

ical effects (such as the influence of elastic deformation), our geo-

metric analysis ignores the influence of dynamical effects on the

distribution of equilibrium states. However, in situations where the

distribution of initial configurations and/or velocities is unknown

(or hard to measure), this purely geometric analysis is the only one

possible: one simply does not have the data needed to obtain more

accurate statistics via dynamical simulation. Moreover, we find in

practice that our geometric analysis is often highly predictive of

statistics obtained via full-blown rigid body simulation—at a fraction

of the computational cost (Section 4.1). This is especially useful for

analyzing complex and dense shapes, where a robust simulator can

take a very long time, and a fast simulator can produce unreliable

or physically implausible results (Section 4.1).

From a purely geometric point of view, one way to reason about

the probabilities of stopping at a certain face is to simply con-

sider the (normalized) solid angles of each face of the convex hull.

0%

0%

50%

50%

Although intuitive, the solid

angle-based approach is only

accurate for a subset of shapes

whose convex hull faces are

all stable (Section 2.4.1). A 2D

counterexample is shown on

the right: a parallelogram that

has zero probability of resting on its top or bottom sides without

tipping over, despite those sides having non-zero associated solid

angles.

Overall, the speed of our method makes it an effective design

tool, where a user can get real time feedback on the equilibrium

distribution of an object while modeling or editing a shape. For

instance, we can show the most likely orientation, or quantify the

probability that an object is stable in a configuration of interest.

Since analysis is nearly instantaneous even when computed from

scratch, users are free to perform arbitrary modeling operations.

Moreover, since we make no assumption on the input geometry

(e.g., it need not be closed, manifold, etc.), the method can easily be

integrated with many existing modeling tools.

We can easily differentiate the computed probabilities with re-

spect to the input geometry, with any assumption about the mass

density, and design objects with arbitrary resting probabilities (Sec-

tion 5). We fabricated such objects with various 3D printers and

experimented with them (see Section 6).

1.1 Related work
The rolling behavior of irregularly-shaped objects has been stud-

ied from antiquity to modern times. For instance, irregular sheep

knuckle bones (with unequal resting probabilities) have long been

used as dice in cultures across the globe [Mazzorin and Minniti

2013]. More recently, mathematical analysis of rolling stability re-

veals remarkable depth—even for simple questions. For instance, as

recently as 2006 an open question was whether there is a 3D shape

with only two equilibria (one stable, one unstable), finally leading

to construction of an object called the Gömböc which answers this

question in the affirmative [Várkonyi and Domokos 2006b,a].

1.1.1 Computational Fabrication. Our work follows the spirit of

research from computational fabrication and inverse design that

analyze and optimize physical properties of rigid solids. For instance,

Make It Stand [Prévost et al. 2013] optimizes the internal weight

distribution to ensure stability of a fabricated shape at a given ori-

entation. Subsequent work has likewise studied buoyancy [Wang

and Whiting 2016; Prévost et al. 2016], and spinning [Bächer et al.

2014; Hafner et al. 2024]. This stream of work leads to the creation

of unified weight distribution frameworks [Wu et al. 2016; Musial-

ski et al. 2015, 2016] to optimize a shape to stand, spin and float

along a chosen orientation. Additional properties such as structural

weakness [Stava et al. 2012; Zhou et al. 2013; Sellán et al. 2022] and

strength-to-weight ratio [Lu et al. 2014] have also been studied in

depth. We refer interested readers to [Livesu et al. 2017] for addi-

tional studies in computational fabrication. Closer to our work, [Fu

et al. 2008; Liu et al. 2016] predict a plausible upright orientation for

man-made objects, using a data-driven approach. In another work,

[Hurst and Tandiman 2024], solid angle of each face is computed

and used to fabricate unfair dice, but the work is only limited to

rectangular prisms. Earlier work such as [Ngoi and Lim 1996] and

[Boothroyd and Ho 1977], inspired by studying how parts rest on

a manufacturing pipeline, relates resting probabilities (also under

momentum-less assumption) to the solid angle of faces of a shape.

We see in Section 2.4.1 that these solid angles correspond to rest-

ing probabilities of faces only for a very limited subset of shapes.

Our work identifies all stable configurations of arbitrary shapes,

and enables fully and semi automatic design/modification of shapes

with all of their resting probabilities in mind. This leads to design-

ing asymmetric shapes that behave like fair die, and shapes with

non-uniform resting probabilities (Section 5).

1.1.2 Rigid Body Simulation. Rigid body simulation has been a use-

ful tool for a variety of tasks ranging from bin packing [Xu et al.

2023] to generating contact force distribution for dropped objects

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Putting Rigid Bodies to Rest • 3

32.5%32.5%probabilityprobability 27.2%27.2% 20.9%20.9% 10.2%10.2% 5.4%5.4% 3.8%3.8%

(photograph)

stable pose

Fig. 2. Our algorithm efficiently and robustly computes the probability of all resting configurations (in 3 ms) of the pig model from the popular game “Pass the
Piggies” [Moffatt 1977]. In particular, our predictions match the experimental data from [Kern 2006] up to an optimal transport distance of 0.09.

[Langlois et al. 2016]. Accurately predicting the probability of rest

poses is challenging for simulators, as it typically requires running

a large number of simulations with randomized initial drop con-

figurations. Beyond the inefficiency of this approach, rigid body

simulators can be difficult to control [Popović et al. 2000], and are

highly sensitive to both physical parameters (such as coefficients of

friction and restitution) and simulation parameters (time step, con-

vergence tolerance, etc.). While modern physics-simulation engines

such as Bullet [Coumans and Bai 2016] and Jolt [Rouwe 2024] are

quite efficient, achieving statistically significant, physically plausi-

ble results can require numerous trials and data-specific parameter

tuning, and may not be possible for all problems. More recent rigid

body simulators, e.g. Rigid IPC [Ferguson et al. 2021], are far more

reliable and always produce physically plausible outcomes; though

this comes with a computational cost and ignoring bounces (coeffi-

cient of restitution) which is essential in many real-world scenes.

We use both Rigid IPC and Bullet to validate our results in Sec-

tion 4.1. Remarkably, we find a strong correspondence between

the probabilities predicted by our model and those obtained from

momentum-preserving simulations. These comparisons also offer

insights that guide our shape optimization process in Section 3.2, en-

abling us to design objects that perform as intended in the presence

of momentum, especially after fabrication.

1.1.3 Rolling Analysis. Rolling trajectorieswere analyzed by Sobolev
et al. [2023], who designed objects that roll naturally along a given

periodic path along the ground. They assume that the center of mass

stays at a fixed height—hence, gravity has no effect on the trajectory,

and objects simply roll like a wheel, given an initial rotation velocity.

In contrast, we do not consider the translation of the objects caused

by rolling, and specifically focus on the rotational trajectory induced

by a gravitational potential.

1.1.4 Morse-Smale Complex. To study the rolling and resting be-

havior of rigid bodies, we construct a potential function defined

along the Gauss map (Section 2), and analyze its Morse-Smale com-
plex (MS complex). In the past, the MS complex has been applied

to a variety of problems in graphics and computational geome-

try, for tasks like shape simplification and quadrilateral remeshing

[Gyulassy and Natarajan 2005; Dong et al. 2006; Bauer et al. 2012;

Weinkauf et al. 2010]. To our knowledge, however, the Morse-Smale

complex has never been used to numerically analyze the rolling of

rigid bodies.

2 Algorithm
Input. The input to our algorithm is a 3D shape Ω ⊂ R3 (encoded

by a mesh, a point cloud, etc.) with center of mass c ∈ R3. We assume

Ω has a polyhedral convex hullH ⊇ Ω, and make a general position

assumption that each face 𝑓 on the boundary ofH is a triangle. The

shape Ω need not have a homogeneous mass density, and hence c
may not coincide with the geometric barycenter. However, we do

assume nonnegative density so that c lies within the convex hullH .

Output. The output of our computation is a set of probabilities

𝑝 𝑓 ∈ [0, 1] assigned to each face of H , with

∑
𝑓 ∈H 𝑝 𝑓 = 1. The

quantity 𝑝 𝑓 gives the probability that Ω will roll to rest on face

𝑓 , after starting from an initial orientation chosen uniformly at

random.

An example shape with all its stable orientations and their corre-

sponding probabilities is shown in Figure 2.

2.1 Rolling as Energy Minimization
Our analysis assumes the rigid object Ω translates and rotates in

response to a gravitational potential, but does not exhibit any mo-

mentum, coming to rest as soon as the potential is locally minimized.

These modeling assumptions are essentially equivalent to a high-

friction scenario, where kinetic energy is rapidly dissipated due to a

rough surface (e.g., rolling across a thick carpet) or a high-viscosity

assumption, where kinetic energy is dissipated due to drag (e.g.,
submerged in a viscous liquid).

More explicitly, the object follows gradient trajectories of the

following optimization problem:

minimize

R∈𝑆𝑂 (3),t∈R3

∫
Ω
𝜌 (Rx + t) · ẑ𝑑𝑉 (1)

subject to: x𝑧 ≥ 0∀x ∈ Ω. (2)

Here R and t represent the rotation and translation of the object,

resp., 𝜌 : Ω → R≥0 is the mass density, the vector ẑ = (0, 0, 1) is
the opposite direction of gravity, and the constraint in Equation 2

prohibits the object from falling through the ground floor (𝑧 = 0).

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

4 • Baktash, Sharp, Zhou, Crane, and Jacobson

Fig. 3. For a convex polyhedron (right), the Gauss map partitions the sphere
(left) into regions corresponding to normals spanned at vertices, separated
by arcs corresponding to normals spanned at edges, connected to isolated
points corresponding to the normals of faces.

Denoting𝑚 =
∫
Ω 𝜌 𝑑𝑉 (total mass) and c = 1

𝑚

∫
Ω 𝜌 x𝑑𝑉 (center

of mass), by linearity the integral in Equation 1 can be simplified

to (𝑚Rc +𝑚t) · ẑ = 𝑚(Rc + t) · ẑ. Without loss of generality we

can assume𝑚 = 1, then we are simply left with the 𝑧-coordinate or

“height” of the transformed center of mass (Rc + t) · ẑ. Moreover,

for any fixed rotation R, the corresponding optimal translation t is
trivial: move the object Ω downward starting at 𝑧 = +∞ until some

vertex hits the ground. Hence, we need only consider R directly.

For any rotation R ∈ 𝑆𝑂 (3) of the object, the direction n̂ = R−1ẑ
is a unit vector representing the opposite gravity direction in the

object’s local coordinate frame. It can be associated with a face, edge

or vertex of the convex hull,H , based on its location inH ’s Gauss

Map. SinceH is a convex triangulated polyhedron, its Gauss Map is

a dual mesh, where original faces, edges and vertices map to points,

great arcs, and spherical polygons on the Gauss sphere. Together,

they form a partition of the unit sphere (Figure 3). We refer to the

(in general) set of normals corresponding to any hull simplex 𝑖 as

N𝑖 ⊂ 𝑆2

Rotating the object around the 𝑧-axis does not change its gravita-

tional potential: the height of the center of mass c does not change.
When a hull vertex with position x𝑗 ∈ R3 is resting on the ground,

and the upward direction, ẑ, is obtained by rotating a normal direc-

tion n̂ by a rotation R, then the height of the center of mass c is a
simple smooth function (ignoring new collisions with the ground):

𝑈 𝑗 (n̂) =
(
c − x𝑗

)
· n̂ (3)

If the shape is lowered towards the ground in the −n̂ direction, there

will be a unique vertex, edge, or face that hits the ground first. We

can write the height of the center of mass as a piecewise-smooth

function:

𝑈 (n̂) =
∑︁
𝑗

𝛿 𝑗 (n̂)𝑈 𝑗 (n̂), (4)

where 𝛿 𝑗 (n̂) equals 1 if n̂ lies in the interior of vertex 𝑗 ’s spherical

polygon on the Gauss map,
1

2
if it lies on 𝑗 ’s boundary arc, 1

3
if it lies

on 𝑗 ’s boundary vertex, and 0 otherwise. This allows us to rewrite

Fig. 4. The height of the center of mass is a continuous function (𝑈) with
respect to the downward normal direction. Visualized in pseudocolor over
the Gauss map we can see that its gradient 𝜕𝑈 /𝜕n̂ can be discontinuous
across dual edges.

the minimization in Equation 1 directly over n̂:

minimize

n̂∈𝑆2
𝑈 (n̂) (5)

.

2.2 Tracing a single path
Given some initial upward orientation n̂0, a momentumless sim-

ulation of rolling amounts to rotating in the direction that most

decreases 𝑈 until it is locally minimized, resulting in a stable orien-

tation. Note that we always assume that the inner product on 𝑆2 is

induced by the Euclidean metric.

2.2.1 Tracing in a vertex’s Gauss image. The gradient 𝜕𝑈 /𝜕n̂ is

well defined when n̂ falls in the Gauss image of some hull vertex 𝑖 .

We can avoid numerical gradient integration and use the fact that

pathlines of the 𝜕𝑈 /𝜕n̂ vector field inside a vertex 𝑖’s dual image

are great arcs on 𝑆2 emanating from a unique point n̂★
𝑖
(see Sec.

2.3.2). To precisely integrate along 𝜕𝑈 /𝜕n̂, we can find the point of

intersection between the great arc “ray” departing from the current

normal n̂ in the direction of −𝜕𝑈 /𝜕n̂ and the dual edges (also great

arcs) bounding the dual image of vertex 𝑖 .

2.2.2 Tracing in an edge’s Gauss image. If n̂ falls along the Gauss

image of some hull edge 𝑖 𝑗 , then its integration requires a bit of

care. While𝑈 is a continuous function over all 𝑆2, its full gradient

is not well defined along Gauss images of hull edges. These points

correspond to “cusps” akin to the sharp crease formed between

unioned spheres. An example of this type of discontinuity is shown

in figure 4.

Nevertheless, for any normal n̂ along a hull edge’s dual image, the

direction of steepest descent is always well defined.

Edges can be categorized into two

cases, readily understood in the pri-

mary domain H (see inset). When

n̂ lies on the dual image of edge 𝑖 𝑗 ,

it means that the edge is lying on

the ground. In general position, this

leads to two possible cases. In case (E1) the object Ω rotates like

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Putting Rigid Bodies to Rest • 5

Wheel edge

Hinge edge

Fig. 5. Convex hull edges can be classified by their relationship with the
center of mass: the object either rotates end-of-end like a cartwheel (top) or
around the edge as an axis (bottom).

a cartwheel onto one of its incident vertices, based on the steep-

est descent at n̂ agreeing with the gradient of the contribution for

either incident vertex 𝜕𝑈𝑖/𝜕n̂ or 𝜕𝑈 𝑗/𝜕n̂. Alternately, in case (E2)

the object Ω rotates around the edge (like a hinge) onto one of its

incident faces, based on the steepest descent at n̂ agreeing with

𝜕𝑈 /𝜕n̂ restricted to the Gauss image of the edge 𝑖 𝑗 . Each edge 𝑖 𝑗

falls into one case regardless of the particular evaluation normal n̂
in its Gauss image. We can identify edges precisely in the primary

domain with the following steps:

(1) Take an arbitrary plane 𝐿 passing through x𝑖 , x𝑗 ,
(2) Divide 𝐿 into three sections by drawing two parallel lines

from x𝑖 and x𝑗 , both orthogonal to the segment [x𝑖 , x𝑗],
(3) Let c̃ be the projection of the center of mass c onto 𝐿,
(4) If c̃ is not in the middle section, then 𝑒 is a cartwheel edge

(E1) rolling onto the closest vertex to c̃,
(5) Otherwise 𝑒 is a hinge edge (E2).

For case E1, the next step of rolling continues with tracing within

the identified vertex’s Gauss image (see Sec. 2.2.1). For case E2, the

next step of rolling continues to an incident face, identified by check-

ing the direction of 𝜕𝑈 /𝜕n̂ restricted along the edge’s Gauss image

evaluated at the current normal n̂. These two types of behaviour

are shown in the primary domain in figure 5.

2.2.3 Tracing in a face’s Gauss image.
The situation is similar if n̂ is equal to

a face 𝑓 ’s normal (laying in its Gauss

image by nature of being the same

isolated point). A face is either stable
(F0, rolling stops), or rolling continues

onto a vertex (F1, like a cartwheel) or onto an edge (F2, like a hinge).

We can precisely classify each case in the primary domain with the

following steps:

(1) Split the plane of this face 𝐿 into 7 regions: interior of the

triangle, three “stripe” regions formed by each edge, and three

cone regions at every vertex (see inset);

(2) Let c̃ be the projection of the center of mass c onto 𝐿,
(3) If c̃ is in a stripe region, then the next step in rolling is onto

the edge corresponding to that stripe;

(4) If c̃ is in a cone region, then the next step is onto the vertex

corresponding to that cone;

(5) Otherwise c̃ lies inside of the interior of the triangle and the

face is stable (F0).

Before conducting any tracing we can classify all hull edges (as

E1 or E2) and hull faces (as F0, F1, or F2). For E1 and F1 types we

only need to determine the vertex that they roll onto. For E2 and F2

types we determine the face they roll onto; note that F2 faces roll

onto an edge that is an E2 and rolls on to a face. This information is

sufficient for doing a complete trace (see inset).

Dual cell
of vertex

Intersection
with dual edge

Initial normal

2.2.4 Complete trace. Then, for any
given input downward orientation n̂,
we can complete its trace to a stable

face by iteratively rolling from one

element (vertex, edge or face) to the

next. Due to strict convexity, each

step decreases 𝑈 and the process is

guaranteed to terminate. Note that af-

ter identifying which vertex’s Gauss

image n̂ lays at, all the subsequent

steps consist of only local operations. A pseudo-code of this tracing

procedure is given in Appendix A, algorithm 1.

This is already a very efficient and robust method for laying ob-

jects to rest from an initial orientation. Examples of a tracing process

on the Gauss map are shown in figure 7. A tracing process example

in the ambient domain is also shown in figure 6. This task is found

in the GrabCAD software to assist user’s placement of 3D printed

parts stably onto the build platform. Our proposed method is 400

to 60 times faster than a single bullet simulation (more complex

geometry leads to larger speed-ups) and does not rely on tolerances

or finicky collision detection/handling to determine its final orienta-

tion. In our comparisons with physics engines, we noticed that for

some initial orientationsH comes to rests on unstable faces, and

even more surprisingly on edges; likely due to numerical issues and

collision detection limits.

2.3 Categorizing all paths by constructing the
Morse-Smale complex

min
ascending
manifold

saddle

max

The Morse-Smale complex of a scalar

function over a 2D domain (such as

the Gauss sphere) partitions into cells

restricted upon which the function is

monotonic [Morse 1934; Smale 1961].

The cells are bounded by separatrix

curves connecting extrema to saddle

points (see inset).

The “ascending manifold” for a

local minimum corresponds to the

union of cells containing all points that flow to that minimum. The

area of the ascending manifold around the Gauss image of a stable

face’s n̂𝑓 is precisely proportional to the resting probability 𝑝 𝑓 . Our

goal is to construct the Morse-Smale Complex atop the Gauss map

of the input shapes convex hullH , so that we can simply read off

these areas.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

6 • Baktash, Sharp, Zhou, Crane, and Jacobson

Object View
Vertex contact

Edge contacts

Face contact

Convex Hull View
Vertex contact

Edge contacts

Face contact

Fig. 6. Imagine an object falls from well above the floor in a general arbitrary orientation. Translating the object downward along the 𝑧 direction decreases the
gravitational potential until the object makes contact with the floor at some vertex on its convex hull. The center of mass will not lie directly above the vertex,
causing a rotation around the vertex until another hull vertex meets the ground: a hull edge now lies on the ground. Once again, c lies off center from the edge
causing rotation either over the new vertex or around the edge as a hinge. A hinge edge rotation stops when another vertex hits the ground: a face of the hull.
This process may repeat: passing through additional vertices, edges and faces, but due to our general-position assumption it always stops when the center of
mass lies directly above some stable face 𝑖 .

Fig. 7. We follow the gradient of𝑈 from an orientation n̂0 to a local mini-
mum of𝑈 for two examples: a tetrahedron and a bunny. Yellow curves show
the orientation trajectories: piecewise-great-arc curves on the Gauss image.

2.3.1 Local Minima. Local minima occur at stable hull faces: the

normal n̂𝑖 for every face 𝑖 classified as a F0 (see Sec. 2.2.3) is recorded
as a minimum.

2.3.2 Local Maxima. Local maxima occur at unstable hull vertices.

For each vertex, we can identify the normal direction n̂★
𝑗
which

maximizes the height of the center of mass according to that vertex’s

function contribution𝑈 𝑗 :

n̂★𝑗 = argmin

n̂
𝑈 𝑗 (n̂) = �x𝑗 − c. (6)

This direction does not necessarily result in vertex 𝑗 touching the

ground first, so a vertex 𝑗 is a maximum vertex if and only if its

maximizing normal is in its Gauss image (n̂★
𝑗
∈ N𝑗).

2.3.3 Saddle points. Saddle points only occur at type E2 “hinge”

edges (see Sec. 2.2.2). When edge 𝑖 𝑗 lies on the ground, consider

rotating about the edge as a hinge until the center of mass lies

directly above:

n̂★𝑖 𝑗 = �c − c𝑖 𝑗 (7)

c𝑖 𝑗 = x𝑖 +
(c − x𝑖) · v𝑖 𝑗
v𝑖 𝑗 · v𝑖 𝑗

· v𝑖 𝑗 (8)

where c𝑖 𝑗 ∈ R3 is the projection of the center of mass c onto the

edge 𝑖 𝑗 and v𝑖 𝑗 = x𝑗 − x𝑖 is the edge vector. This normal is a saddle

point if and only if it lies in the Gauss image of the type E2 edge

(n̂★
𝑖 𝑗
∈ 𝑁𝑖 𝑗).

2.4 Tracing a Separatrix on the Gauss Map
A separatrix is a curve connecting a saddle point to a local min-

imum or maximum. Similar to tracing rolling paths in the Gauss

map (see 2.2.4), we can avoid numerical integration by precisely

constructing each segment of the separatrix. A separatrix is itself

a gradient flow line [Smale 1961], so it is also a piecewise-great-

arc curve on the Gauss map. Starting at a saddle point on an edge

𝑖 𝑗 we follow the steepest descent/ascent directions (according to

𝜕𝑈𝑖/𝜕n̂ or 𝜕𝑈 𝑗/𝜕n̂), passing through intersection points with Gauss

images of other edges (also great arcs), until reaching a local min-

imum/maximum (pre-identified in a vertex’s Gauss image). This

algorithm requires only: the pre-identification of maximum vertices,

saddle edges, and minimum (stable) faces, which can be done by a

single pass over them; and a subroutine for intersecting great-arcs.

Pseudo-code for the subroutine and the full procedure is given in Ap-

pendix A, algorithms 2 and 3. Some separatrix examples are shown

for various shapes in figure 8. This procedure is very fast, as it can

be seen as tracing gradients from a set of initial orientations (saddle

points), which can only be as large as the number of edges of H .

Finally, we compute the area 𝐴𝑓 of the ascending manifold for each

stable faces (local minimum point of the Morse-Smale complex):

𝑝 𝑓 =
𝐴𝑓

4𝜋
. (9)

Each ascending manifold is a spherical polygon given by a set of

unit vectors u1, u2, . . . , u𝑘 , we can also compute 𝐴𝑓 as a sum over

signed spherical triangle areas:

𝐴𝑓 =
∑︁
𝑖

Ω(n̂, u𝑖 , u𝑖+1) (10)

where Ω(n̂, u𝑖 , u𝑖+1) is signed area of the spherical triangle with

vertices {n̂, u𝑖 , u𝑖+1}, vector n̂ (treated like the origin) can be taken to

be any point on the sphere. When computing the area of a ascending

manifold corresponding to face 𝑓 , we take n̂ to be the normal of

face 𝑓 . This signed area can also be interpreted as the solid angle of

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Putting Rigid Bodies to Rest • 7

a planar triangle with vertices at n̂, u𝑖 , u𝑖+1; see [Van Oosterom and

Strackee 1983] for details.

2.4.1 Special Cases. The procedure explained earlier can be sim-

plified for certain class of shapes. If all faces of H are stable, and

all vertices ofH are unstable equilibria (n̂★
𝑗
∈ N𝑗 , ∀𝑗), then 𝑝 𝑓 for

every face 𝑓 is simply the normalized solid angle of face 𝑓 seen from

the center of mass ofH . This fact has lead to the solid angle heuris-

tics used in earlier work (such as [Ngoi and Lim 1996], [Boothroyd

and Ho 1977]), but these assumptions are extremely limiting and

almost never hold for general shapes. Evaluation of our method on

symmetric shapes, e.g. platonic solids, also reduces to computing

solid angles of faces and results in uniform probabilities for all faces.

We know by symmetry that this is indeed correct.

3 Manipulating the probabilities
In this section, we leverage the fast and differentiable nature of our

algorithm to design new shapes or deform existing ones to achieve

a desired resting probability distribution.

Starting from an initial convex shape H , we first compute its

resting probabilities {𝑝 𝑓 } and their gradients with respect to the

vertex positions ofH . Using these gradients, we iteratively modify

the shape until we find a convex surfaceH∗ that matches the target

resting probabilities, as described in Section 3.2. When the goal is

to design a non-convex shape with specified resting probabilities,

we begin with an initial non-convex surface and deform it so that

its convex hull matchesH∗, as detailed in Section 3.4.

3.1 Differentiation
In order to build an ascending manifold and compute its area in sec-

tion Section 2.4, we need to compute all separatrixes on its boundary.

Each is a path {u0, u1, . . . , u𝑘 } starting at a saddle point u0 ∈ 𝑆2 of
𝑈 , and ending at a local maximum or minimum u𝑘 . Every point u𝑖
in this piecewise geodesic path is directly computed from the pre-

vious point u𝑖−1, and the Gauss image of the edges along the path.

In addition, u0 is simply expressed in terms of its corresponding

edge position and the given center of mass. Therefore, all involved

quantities can be computed locally, which makes computing gra-

dients efficient with automatic differentiation. We use the resting

probabilities and their gradients in the next sections to build models

for designing arbitrary dice.

3.2 Dice Energy
In our design problems, the goal is to take a target discrete distribu-

tion 𝑄 = {𝑞1, . . . , 𝑞𝑘 } and find a convex surfaceH∗ with associated

probabilities {𝑝 𝑓 }, where the nonzero 𝑝 𝑓 ’s are a permutation of the

𝑞𝑖 ’s.

We model this task by defining and optimizing an energy func-

tional over convex shapes. Given a convex shapeH with center of

mass at c, we define the energy:

𝐸
diceSimple

(H , c) =
∑︁

𝑓 ∈𝐹 (H)

(
𝑝 𝑓 − 𝑞(𝑓)

)
2

(11)

Here, 𝑞 : 𝐹 (H) → 𝑄 ∪ {0} assigns target probabilities to faces of

H : exactly one face should be assigned to each 𝑞𝑖 ∈ 𝑄 , while other

faces are assigned zero probability.

A natural approach to minimizing 𝐸
diceSimple

and finding H∗
is to start from an initial convex surface H0

and use a first-order

method to deformH0
along the gradient of 𝐸

diceSimple
, producing a

sequence of surfaces {H𝑡 } until the desired distribution is achieved.

The main difficulty in optimizing energies involving 𝑝 𝑓 lies in

the topological changes that occur in the sequence {H𝑡 } or the
Morse–Smale complex of their potential functions. These changes

can arise either from change in the mesh connectivity (which is

determined uniquely by the vertex positions) or from changes in

the Morse complex of the function 𝑈 . Small perturbations to the

geometry can cause critical events such as the splitting of a large

stable face into multiple smaller ones, or the merging of multiple

stable faces into a single one.

Because of these instabilities, 𝐸
diceSimple

is only piecewise con-

tinuous, and the energy landscape becomes difficult to navigate.

Furthermore, maintaining a consistent assignment of target prob-

abilities to faces becomes challenging at every step 𝑡 . To address

these issues, we instead take 𝑘 normal directions u𝑖 ∈ 𝑆2 to which

we assign the target probabilities 𝑞𝑖 (1 ≤ 𝑖 ≤ 𝑘). These normals are

not necessarily aligned with the face normals ofH . We then cluster

stable faces based on proximity to the u𝑖 , with each cluster denoted

by 𝐹𝑖 (i.e., the set of faces whose normals lie in the Voronoi cell of

u𝑖).
This leads to a better-behaved energy:

𝐸
dice
(H , c) =

∑︁
𝑖

©«©«
∑︁
𝑓 ∈𝐹𝑖

𝑝 𝑓
ª®¬ − 𝑞𝑖ª®¬

2

(12)

With this new energy, events such as face splits or merges within

a cluster have a much softer effect on 𝐸
dice

, toning down discon-

tinuities and improving optimization robustness. In practice, 𝐸
dice

often converges to zero for most inputs, whereas 𝐸
diceSimple

tends

to stall near discontinuities.

Moreover, this formulation allows for a simple policy for updating

the directions u𝑖 : at each deformation step, u𝑖 is updated to the

normalized average of the stable face normals in cluster 𝐹𝑖 .

While the original goal is to assign each probability 𝑞𝑖 to exactly

one stable face, minimizers of 𝐸
dice

can occasionally produce clus-

ters containing multiple stable faces whose combined probability

matches 𝑞𝑖 . This can be addressed by introducing a regularizer that

softly encourages the merging of stable faces within each cluster.

Additional regularizers are also used to enforce aesthetic and physi-

cally motivated constraints.

Center of Mass. When optimizing energies involving 𝑝 𝑓 ’s, we

must decide whether we are designing a shape assuming uniform

mass density (that uniquely determines the center of mass), or tar-

geting a fixed center of mass c0 without considering the internal

mass distribution. This choice affects the gradient of the dice energy

with respect to the vertex positions ofH . Fortunately, either variant

can be incorporated seamlessly into the algorithm using automatic

differentiation.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

8 • Baktash, Sharp, Zhou, Crane, and Jacobson

Fig. 8. Morse complex examples (red) drawn on the Gauss map (black) of the convex hull of some models. Stable face normals (red), edge saddle normals
(blue), and vertex maximum normals (green) are also shown. For the Bunny example a point cloud is used as input; our method can take any type of input as
long as a convex hull of the input can be computed.

3.3 Regularizers for Dice Energy
As mentioned earlier, it is often desirable to have a single stable

face at each cluster. One may also prefer to have few unstable faces

in the neighborhood of a stable face, leading to a large, flat stable

face within each cluster. Moreover, in Section 4.1 we observe that

having the stable face normal positioned away from the boundary

of its ascending manifold improves agreement with simulation re-

sults that incorporate momentum, and possibly even with physical

experiments. All of these properties can be incorporated into our

optimization framework through regularization terms.

3.3.1 Cluster Co-planar Energy.

𝐸𝑐𝑙 (H , c) =
∑︁
𝑖

∑︁
𝑓𝑘 ,𝑓𝑙 ∈𝐹𝑖

∥n̂𝑓𝑘 − n̂𝑓𝑙 ∥
2

(13)

This term encourages the stable face normals within a cluster to

align closely, potentially merging into fewer stable faces. This is

particularly helpful since 𝐸
dice

handles topological changes in the

Morse complex of 𝑈 gracefully; once 𝐸
dice

converges to zero, 𝐸𝑐𝑙
further promotes merging of stable faces within each cluster.

3.3.2 Barycenter Energy.

𝐸𝑏𝑐 (H , c) =
∑︁
𝑖

∑︁
𝑓 ∈𝐹𝑖
∥n̂𝑓 − 𝑏 (𝐹𝑖)∥2 (14)

This term encourages the stable face normals within a cluster 𝐹𝑖 to

approach the barycenter 𝑏 (𝐹𝑖) of the cluster region. The cluster re-
gion, formed by the union of the ascending manifolds of stable faces

in 𝐹𝑖 , resembles a closed spherical polygon. Rather than computing

the exact barycenter, we approximate it by averaging and normaliz-

ing the boundary maximum points of the ascending manifolds.

3.3.3 Neighbor Attraction Energy.

𝐸𝑛𝑏 (H , c) =
∑︁
𝑖

∑︁
n̂𝑓 ∈𝐵𝜖 (u𝑖)

∥u𝑖 − n̂𝑓 ∥2 (15)

This term encourages neighboring faces around a stable face to align

with the same normal, promoting coplanarity and producing stable

faces with more isolated normals.

Adding up everything, we arrive at the final energy

𝐸 = 𝐸
dice
+ 𝜆𝑐𝑙𝐸𝑐𝑙 + 𝜆𝑛𝑏𝐸𝑛𝑏 + 𝜆𝑏𝑐𝐸𝑏𝑐 (16)

All terms in this energy can be computed alongside the area of as-

cending manifolds, without adding complexity to the algorithm. We

use the Stan Math library [Carpenter et al. 2015] for automatic differ-

entiation to compute gradients of 𝐸 (H , c) with respect to the vertex

positions ofH . In Figure 9, we demonstrate how each regularizer

affects the final result.

To minimize 𝐸, we use gradient descent with line search. Note

that directly updating vertex locations of H (denoted x) along
the gradient, i.e., xnew = x + ∇x𝐸, may result in a surface that

is no longer convex. Therefore, for each update (especially during

line search), we compute the convex hull of the new vertex set:

Hnew = ConvHull(xnew). This procedure often reduces the num-

ber of vertices inHnew
. While acceptable in most cases, it presents

challenges in Section 5.2, where we work with high vertex-count

surfaces. To mitigate this, we observe that the dice energy gradient

is sparse, and apply Sobolev preconditioning to diffuse the gradient.

As a result, we can find smoother convex shapes; instead of starting

with a convex hull of 1000 vertices and ending with only 20, we

typically retain around 120 vertices.

3.4 Inverse Convex Hulls
We can also start from non-convex shapes with uniform mass and

deform them into objects with the desired resting probabilities, as

discussed in Section 5.2.

Starting from an initial concave surface 𝑆0 with center of mass

c0 and convex hullH0
, we apply the dice energy optimization to

H0
, assuming a fixed center of mass at c0. Denoting the resulting

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Putting Rigid Bodies to Rest • 9

Initial Shape
Optimized with

regularizers
Optimized

without regularizers
λcl = 0

λbc = 0

λnb = 0

a)

b)

c)

Fig. 9. A dice design example from Section 5.1, where using all regularizers
produces desirable shapes (middle column). On the right, we ablate each
regularizer to show the adverse effects (highlighted faces). (a) Removing the
cluster co-planar energy results in two distinct stable faces in the top cluster
whose normals are not closely aligned, although their probabilities still sum
correctly. (b) Removing the barycenter energy allows stable face normals
to drift toward the boundaries of their ascending manifolds. Also leading
to clumping of normals that should remain distinguishable. (c) Without
neighbor attraction energy, some polygonal faces split into separate stable
and unstable regions. While this does not affect the resting distribution, it
may be aesthetically undesirable.

convex hull byH∗, we then reconstruct a surface 𝑆∗ by solving:

𝑆∗ = argmin

𝑆

d(𝑆, 𝑆0) (17)

s.t. ConvHull(𝑆) = H∗ (18)

c(𝑆) = c0 (19)

where 𝑑 (𝑆, 𝑆0) is a combination of elastic surface energies that

measures how much 𝑆 and 𝑆0 look alike. Although 𝑆0 is a natural

reference, it is not mandatory; any 𝑆 fitting insideH∗ with minor

deformation could suffice.

We solve this problem by relaxing constraints 18 and 19 into

soft penalties. First, we construct an intermediate surface 𝑆 satis-

fying ConvHull(𝑆) = H∗. Then, we iteratively deform 𝑆 to obtain

𝑆∗, ensuring that ConvHull(𝑆∗) = H∗ remains true while moving

the center of mass to c0. Details of this procedure are provided in

Appendix B.

Finally, note that constraint 19 could be ignored if one were will-

ing to hollow out the interior of 𝑆 as in [Prévost et al. 2013]. However,

maintaining a uniform mass distribution simplifies fabrication, par-

ticularly for standard 3D printing processes.

4 Evaluation

4.1 Comparison to Simulation
In order to validate our approach, We compare the resting prob-

abilities predicted by our model with those obtained from a rigid

body simulator. Our simulation setup involves repeatedly dropping

a test shape onto a flat plane from a fixed height and with uniformly

IPC vs Bullet Ours vs Bullet Ours vs IPC

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

0.0

0.2

0.4

0.6

0.8

1.0

ρ

0.0 0.5 1.0 1.5

W
0.0 0.5 1.0 1.5

W
0.0 0.5 1.0 1.5

W
0

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 10. In the marginal density plot above, we visualize the relationship
between of the optimal transport cost (𝑊) and 𝜌 for probabilities obtained
from our model, Rigid IPC simulation, and Bullet simulations. The density
distribution of𝑊 and 𝜌 are on the top and right margin. We see a closer
agreement between our model and Rigid IPC, than the other two pairs of
comparisons.

sampled initial orientations. The resulting resting orientations are

recorded, and the final probabilities are then computed from these

statistics.

For the initial orientation, we sample directions u ∈ 𝑆2 and use

them as the default up orientations of the test shape. Specifically,

we choose u from the vertices of a fine icosahedral subdivision of

the sphere (u1, . . . , u𝑘) and weigh the drop outcome at each u𝑖 by
the dual area of vertex 𝑖 . We use a subdivision with 1212 vertices.

We use the Wasserstein distance (see [Villani et al. 2009]) to mea-

sure the deviation between our predictions and simulation results.

Denoting 𝑃 = {n̂𝑓 , 𝑝 𝑓 } as the stable face normals and associated

probabilities from our model, and 𝑄 = {n̂𝑓 , 𝑞𝑓 } from simulation,

the Wasserstein distance is defined as:

𝑊 (𝑃,𝑄) = min

𝛾 ∈Γ (𝑃,𝑄)

𝑚∑︁
𝑖=1

𝑚∑︁
𝑗=1

𝛾𝑖 𝑗𝑑 (n̂𝑖 , n̂𝑗)

where Γ(𝑃,𝑄) is the set of transport plans from 𝑃 to 𝑄 , and 𝑑 : 𝑆2 ×
𝑆2 → R denotes the geodesic distance on 𝑆2. Finding𝑊 is straight-

forward since the supports of 𝑃 and 𝑄 are discrete, consisting of

stable orientations (a small number of points on 𝑆2 for most shapes).

We use this measure to gracefully handle large probability dis-

crepancies between faces with very close normals. Due to numerical

sensitivity in dynamic simulation, such faces can naturally have

large deviations.

We compare probabilities obtained from our model, Rigid IPC,

and Bullet across a subset of 700 shapes from the Breaking Bad

dataset [Sellán et al. 2022], including zeroth and second-order frac-

ture modes. Results are shown in Figure 10. We observe that our

model agrees closely with Rigid IPC, while both differ significantly

from Bullet.

Quality of Rigid Body Simulation. Although Rigid IPC is signifi-

cantly more robust than Bullet, it does not model elastic collisions

(bounces) with the ground. During our experiments, we found Bullet

to be numerically unreliable, especially for surfaces with convex

hulls containing a high number of vertices. Bullet simulations often

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

10 • Baktash, Sharp, Zhou, Crane, and Jacobson

terminated in configurations not at static equilibrium—e.g., stuck

on unstable faces or edges.

These unstable cases usually have normals and potential energy

very close to nearby stable faces. In such instances, we map the

result to the nearest stable face. On average, these “stuck” cases

account for about 20% of samples, with higher occurrence for convex

hulls exceeding 1000 vertices and containing small dihedral angles.

We attribute this to inaccuracies in Bullet’s collision handling and

integration. In about 1% of cases, the simulation froze on an edge or

far from any stable normal. Despite extensive parameter tuning, no

single parameter set yielded reliable behavior across all test shapes,

leading us to discard such samples.

More importantly, the cost of computing even these approximate

probabilities via simulation is orders of magnitude more expensive

than our method. Average speed of a single instance of a Bullet

simulation is 0.04 seconds. We speed up Rigid IPC experiments

by using the convex hull of the input shape for collision with the

ground plane, while keeping the original mass moments. After this

speed up, a single simulation instance takes 0.1 to 10 seconds on

a single core, depending on number of vertices of the convex hull.

This leads to hours of simulation for most common shapes.

Based on physical experiments conducted on a set of shapes (see

Section 6), we find that for simpler shapes with relatively few ver-

tices, Bullet tends to better match experimental outcomes – possibly

due to its handling of elasticity. However, for more complex shapes,

Bullet often produces invalid results, while Rigid IPC yields more

accurate and reliable predictions.

Difference Between Geometric Model and Rigid Body Simulation.
Across our experiments, we observe that differences between our

model and simulations tend to occur when two neighboring ascend-

ing manifolds have asymmetric distances from their local minima

to their shared boundary. Intuitively, when one minimum lies closer

to the boundary, momentum may cause “spillover” across the two

ascending manifolds.

We quantify this heuristic for a shapeH via:

𝜌 (H) =
∑︁

𝑓1,𝑓2∈𝐶
min{𝑝 𝑓1 , 𝑝 𝑓2 } (𝜙 (𝑓1, 𝑓2) − 0.5) (20)

where𝜙 (𝑓1, 𝑓2) measures distance asymmetry between two neigh-

boring ascending manifolds (with stable faces 𝑓1, 𝑓2):

𝜙 (𝑓1, 𝑓2) =
max{∠(n̂𝑓2 , n̂★0), ∠(n̂𝑓1 , n̂

★
0
)}

∠(n̂𝑓1 , n̂★0) + ∠(n̂𝑓2 , n̂
★
0
)

(21)

Here, n̂★
0
is the saddle point normal on the boundary between 𝑓1 and

𝑓2’s ascending manifolds, and ∠(u, v) denotes the angle between
unit vectors u and v.
In Figure 10, we plot 𝜌 versus the Wasserstein distance𝑊 for

all dataset shapes. We observe a significant correlation between 𝜌

and𝑊 ; 0.47 Pearson correlation coefficient ([Pearson 1895]) for our

model versus Rigid IPC, 0.13 for ours vs Bullet, and 0.07 for Bullet

vs Rigid IPC (with respective p-values 1e-20, 5e-4, and 0.06).

4.2 Design Aid
The fast and deterministic nature of our method enables a range of

applications from designing realistic scenes, to providing interactive,

real time feedback to a user for deforming a shape or moving its cen-

ter of mass while monitoring resting probabilities. In Figure 11 we

show a rendered scene of a living room cluttered with toys resting

on their most probable orientation obtained from our algorithm. In

a video in the supplement, we show a user interactively moves the

center of mass, demonstrates that the MS complex (hence probabili-

ties) can be recomputed in real time. One could also use our method

in conjunction with earlier work which restricts the center of mass

to a region in space to make a particular face stable [Prévost et al.

2013; Bächer et al. 2014; Wang and Whiting 2016]; one could then

use our method to find the center of mass location that maximizes

the probability of the corresponding stable orientation. In another

example in Figure 12 we find the center of mass for which the faces

with top 6 probabilities are close to each other.

5 Inverse Design
In this section we solve the inverse problem of designing shapes

with target distributions of resting probabilities. The generality of

our framework enables us to handle distributions, and design dice,

that cannot be achieved using simpler forms of analysis (e.g., based

only on solid angle [Hurst and Tandiman 2024]). For instance, in

some cases, to get the target probabilities, unstable faces must exist;

e.g. a shape with exactly 3 stable faces.

5.1 Convex Dice
Here we find convex polyhedral solid shapes with uniform mass

density (similar to a fair die) with unconventional probability distri-

butions. We consider the following cases:

Binomial die. A single die representing outcomes of 𝑘 fair coin

flips, 𝐵(𝑘, 0.5). We consider 2 ≤ 𝑘 ≤ 6. The results are shown in

Figure 13. In all examples unstable faces exist and are used to achieve

the goal distribution.

For all these examples we start with a cylindrical prism with 𝑘 + 1
sides, and pointy caps. Initial shapes and final results are shown in

Figure 13.

2d6. A single die representing outcomes of sum of outcomes two

fair 6-sided die, from 1+ 1 = 2 to 6+ 6 = 12. In other words, the goal

is an 11-sided shape with the following distribution:

{ 1
36

,
2

36

,
3

36

,
4

36

,
5

36

,
6

36

,
5

36

,
4

36

,
3

36

,
2

36

,
1

36

} (22)

For this example we start with an 11-sided polyhedron and where

all the faces are stable and find a shape with the same connectiv-

ity that has the mentioned probabilities. We use three different

initializations and find the shapes shown in Figure 14.

For each example, the user needs to provide an initial convex

shape, that will be deformed into another convex shape H∗, that
minimizes the dice energy. Also as mentioned in section Section 3.2,

the initial assignment of probabilities 𝑞𝑖 to normals u𝑖 , should be

made by the user. These initial design choices give the user some

leverage on how the final shape looks. However, these initial choices

and the non-convex energies that we have in section Section 3.2

lead to not having guaranteed convergence, and some investigation

of initial choices and fine-tuning parameters is naturally required.

Furthermore, not every initial choice will lead to a solution, or a

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Putting Rigid Bodies to Rest • 11

Fig. 11. Our algorithm computes the probability that a given rigid body lands in each possible equilibrium configuration, without performing any dynamical
simulation. Here we use it to synthesize a household scene cluttered with toys; for each model we show the most likely configuration.

Optimized center of mass

Initial center of mass

Stable configurations Stable configurations
0.0

0.1

0.2
OptimizedInitial Stable Probabilities

Fig. 12. By optimizing the center of mass, we reduced the number of stable
configurations for the classic Stanford bunny, while making the probability
of settling in its top six configurations more evenly distributed.

solution might simply not exist (given the polyhedral connectivity),

or it might be hard to find a good enough solution. That being said,

our method is also far superior to the alternative of trying to design

dice with target probabilities by hand: to our knowledge, no previous

solutions are known for many of the examples shown above, nor did

we find algorithms for designing such dice (e.g., with a mix of stable

and unstable faces). Furthermore the evaluation and differentiation

steps of our method are both extremely fast and make an easy tool

to investigate many design choices.

Initial shape Optimized shape
Optimized

MS complex
Initial

MS complex

Fig. 13. Binomial die for 𝑘 = 2, 3, 4, 5 (respectively from top to bottom) with
different initial cylindrical prism shapes. Each initial and final shape has
unstable faces (pointy caps) that help, and sometimes are essential (for𝑘 = 2)
with finding the shape. Outcome of the optimized shapes are engraved on
corresponding faces in a post-process. The dice energy parameters used for
these shapes ,(𝜆𝑐𝑙 , 𝜆𝑏𝑐 , 𝜆𝑛𝑏) from top to bottom: (0.1, 2, 0) , (0.1, 2, 0.03) ,
(0.1, 2, 0.1) , (0.1, 2, 0.1) , (0.2, 2, 0.2) .

5.2 Concave Dice
Here we find asymmetric fair die with a given number of stable sides.

We start from convex hull of some common models and after finding

an optimal convex hull, we follow the procedure from Section 3.4

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

12 • Baktash, Sharp, Zhou, Crane, and Jacobson

Initial Shape
Initial

MS Complex
Optimized Shape

Optimized
MS Complex

Fig. 14. A variety of dice representing the distribution of the sum of two
six-sided dice are shown, all starting from different polygonal shapes with
11 faces. The first and second rows use the same initial shape but differ-
ent probability assignments to faces. In all these examples, the goal is to
keep all faces stable and polygonal faces planar. Outcome of the optimized
shapes are engraved on corresponding faces in a post-process.The dice en-
ergy parameters used for these shapes, (𝜆𝑐𝑙 , 𝜆𝑏𝑐 , 𝜆𝑛𝑏) , from top to bottom:
(1, 0.1, 1) , (0.8, 0.01, 0.8) , (0.2, 2, 0.2) .

to find a desired concave shape; see Figure 15. The clustered dice

energy from Section 3.2 and the follow-up regularizers are key

to finding these examples; the starting shapes often have many

low probability faces, and because of the high vertex count of the

convex hulls, lots of topological changes can happen to the MS

complex while deforming the convex hull. In some final results in

Figure 15 (like dragon d3 and kitten d3), more ascending manifolds

than expected are present. However, because of the regularizer terms

in Section 3.2, often these ascendingmanifolds have a very small area

and their local minimum is very close to their boundary; resulting

their corresponding configuration to have a negligible probability

in presence of momentum (in a simulation or physical experiment).

In other cases, multiple neighboring ascending manifolds have their

local minima clumped together as a result of being in the same

cluster (by Section 3.2 notation), leading to a negligible difference

in the shape’s orientation when resting on them; so they can be

counted as a single resting orientation.

6 Physical Experiments
In this section we experiment with physically fabricated die that

were designed in Section 5. Since all the shapes were designed with

uniformmass density assumption, an off the shelf printer can be used

for manufacturing. Printed dice are shown in the teaser (Figure 1)

and in Figure 16. To validate that the expected distributions are

achievable, we manually roll each dice on a flat wooden surface

𝑀 times, where𝑀 varies depending on the number of stable faces

of the dice; ranging from 300 to 1000 times for each die. A video

consisting of recordings of some rolling instances is provided in the

supplementary material. The resulting probabilities, obtained by

D3

Initial
Shape

Optimized Hull
& MS complex

Initial Hull &
MS complex

Inverse Hull +
CoM correction

D3

D3

Fig. 15. Fair concave three-sided die obtained from deforming some popular
models. It is often not clear what type of dice is achievable, and a careful
search of parameters needs to be carried out to find a dense convex hull with
a low dice energy. The amount of deformation increases from top to bottom:
minor changes in the dragon model; minor changes to the armadillo’s
fingers and back, with a low frequency shift in the torso area; the kitten
example goes through larger deformations. The dice energy parameters
used for these shapes, (𝜆𝑐𝑙 , 𝜆𝑏𝑐 , 𝜆𝑛𝑏)), from top to bottom: (0.01, 0.01, 0.01) ,
(0.05, 0.3, 0.05) , (0.005, 0.3, 0.005) .

dividing each outcome’s frequency by the total number of rolls, is

reported in Figure 16. Even though the experiments have a lot of

momentum and the die go through lot of bounces in each rolling

instance, we observe that our purely geometric algorithm is a good

prediction of the resting probabilities.

To ensure fairness in experiments, a die is shuffled and rolled

from approximately the same height on the same hard wooden floor,

similar to how dice are rolled in a board game. The momentum and

bounces off the floor make it impossible to have any control over the

final resting orientation. These experiments were also conducted

by multiple people to avoid any recurring tossing bias.

The STL files of the dice are provided in the supplementary mate-

rial and can be used to fabricate the dice with any 3D printer that

facilitates 100% infill density. In our experience, ensuring uniform

100% infill density is key to accurately fabricating these dice and

reproduce the desired probabilities.

We observe that some examples behave as expected and some

deviate from our probabilities, and even probabilities found by Bul-

let/IPC simulations. These observations are mostly in line with our

assessment in Section 4.1. All the empirical, expected, and simulated

distributions are provided in supplementary material.

7 Limitations and Future Work
We make strong modeling assumptions in order to enable analysis

and inverse design. For one, we assume that initial configurations of

the body is distributed uniformly over SO(3). It seems plausible that

this assumption might be relaxed even within the no-momentum

framework—for instance, if we know a priori that initial configura-
tions fall only within a subset of SO(3), it may not be too difficult to

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

Putting Rigid Bodies to Rest • 13

BulletOurs Rigid IPC Experiments

0.5

0

0.4

0

0.4

0

0

0

0

0.175

0.3

0.4

Binomial, n=2
#Rolls: 100

Binomial, n=3
#Rolls: 330

Binomial, n=4
#Rolls: 400

Fair 3-sided
#Rolls: 330

Fair 3-sided
#Rolls: 330

Fair 3-sided
#Rolls: 400

0.4

0.3

0.2

0.1

0.3

0.2

0.1

0.3

0.2

0.1

0.2

0.1

0.3

0.2

0.1

0.3

0.2

0.1

D6 + D6
#Rolls: 1010

0.125

0.075

0.025

0 1 2

0 1 2 3

0 1 2 3 4 1 2 3

1 2 3

1 2 3

Ideal

2 7 123 1110984 5 6

Fig. 16. Result of experiments with 3D printed versions of some of the
dice in Section 5. We see better agreement with our model when the shape
does not have very low probable faces. Three different Binomial die from
Figure 13, three fair 3-sided concave die from Figure 15, and one of the 2D6
dice (from Figure 14) are experimented with.
Important: since statistics are computed using a finite number of trials, one
should not expect probabilities to match exactly—even for perfectly fair dice.
E.g., a fair coin flipped just once cannot possibily match the expected 50/50
probability distribution. Instead, there is necessarily variance in the empirical
probabilities, which decreases with the number of trials. See Section 4.1 for
discussion of how we quantify the difference between probability distributions.

exclude corresponding regions of the Gauss sphere from our calcu-

lations. On the other hand, incorporating some kind of momentum

into our geometric analysis is a more challenging question—which

we leave to future work.

Our approach might also be adapted to predict the orientation of

buoyant objects that float on water. In general, developing a more

geometric approach to the statistical analysis of equilibria appears

to be a fruitful direction for future work in computational design.

For the inverse design examples in this paper, we always begin

with a reference shape and deform it to match a target distribu-

tion. Although the process is fully automatic, incorporating semi-

automatic steps could lead to more aesthetically pleasing results.

For instance, a user could manually adjust the shape to better fit the

target convex hull or to achieve the desired center of mass. In some

cases, the dice energy fails to fully converge, or the deformations

of concave shapes become too large, resulting in self-intersections.

Given the efficiency of our forward computation, we believe that a

semi-automatic design approach could effectively address most of

these issues.

Finally, when designing real physical objects, there are many fab-

rication issues to consider. For example, very skinny faces, though

statistically correct, may be difficult to realize accurately using a

given 3D printing process. In this paper we use physical models

merely as a mechanism for evaluation, and leave questions of robust

manufacturing to future work.

Acknowledgments
Thisworkwas generously supported byNSF awards 2212290, 1943123,

NSERC Discovery (RGPIN–2022–04680), the Ontario Early Research

Award program, the Canada Research Chairs Program, a Sloan Re-

search Fellowship, the DSI Catalyst Grant program and gifts from

Adobe Systems. The authors also thank Joseph Sharp for resin print-

ing the dice, Zoë Marschner and Olga Gut,an for helping with con-

ducting and recording the dice experiments, and Carnegie Mellon

University TechSpark 3D printing facilities for enabling and helping

with dice fabrication.

References
Moritz Bächer, Emily Whiting, Bernd Bickel, and Olga Sorkine-Hornung. 2014. Spin-it:

Optimizing moment of inertia for spinnable objects. ACM Transactions on Graphics
(TOG) 33, 4 (2014), 1–10.

Ulrich Bauer, Carsten Lange, and Max Wardetzky. 2012. Optimal topological simplifica-

tion of discrete functions on surfaces. Discrete & computational geometry 47 (2012),

347–377.

G Boothroyd and C Ho. 1977. Natural resting aspects of parts for automatic handling.

(1977).

Bob Carpenter,MatthewD.Hoffman,Marcus Brubaker, Daniel Lee, Peter Li, andMichael

Betancourt. 2015. The Stan Math Library: Reverse-Mode Automatic Differentiation

in C++. arXiv preprint arXiv:1509.07164 (2015). https://arxiv.org/abs/1509.07164

Erwin Coumans and Yunfei Bai. 2016. Pybullet, a python module for physics simulation

for games, robotics and machine learning. (2016).

Shen Dong, Peer-Timo Bremer, Michael Garland, Valerio Pascucci, and John C Hart.

2006. Spectral surface quadrangulation. In Acm siggraph 2006 papers. 1057–1066.
Zachary Ferguson, Minchen Li, Teseo Schneider, Francisca Gil-Ureta, Timothy Langlois,

Chenfanfu Jiang, Denis Zorin, Danny M. Kaufman, and Daniele Panozzo. 2021.

Intersection-free Rigid Body Dynamics. ACM Transactions on Graphics (SIGGRAPH)
40, 4, Article 183 (2021).

Hongbo Fu, Daniel Cohen-Or, Gideon Dror, and Alla Sheffer. 2008. Upright orientation

of man-made objects. In ACM SIGGRAPH 2008 Papers (Los Angeles, California)
(SIGGRAPH ’08). Association for Computing Machinery, New York, NY, USA, Article

42, 7 pages. doi:10.1145/1399504.1360641

Eitan Grinspun, Anil N Hirani, Mathieu Desbrun, and Peter Schröder. 2003. Discrete

shells. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation. Citeseer, 62–67.

Gurobi Optimization, LLC. 2024. Gurobi Optimizer Reference Manual. https://www.

gurobi.com

Attila Gyulassy and Vijay Natarajan. 2005. Topology-based simplification for feature
extraction from 3D scalar fields. IEEE.

Christian Hafner, Mickaël Ly, and Chris Wojtan. 2024. Spin-It Faster: Quadrics Solve

All Topology Optimization Problems That Depend Only On Mass Moments. ACM
Trans. Graph. 43, 4, Article 171 (sep 2024), 13 pages. doi:10.1145/3658194

Kai Hormann and Günther Greiner. 2000. MIPS: An efficient global parametrization

method. Curve and Surface Design: Saint-Malo 1999 (2000), 153–162.
Paul R Hurst and Vanessa Tandiman. 2024. The Centroid Solid Angle and Probability

Models of Square Prism Dice Rolls. In 2024 Joint Mathematics Meetings (JMM 2024).
AMS.

John C Kern. 2006. Pig data and Bayesian inference on multinomial probabilities.

Journal of Statistics Education 14, 3 (2006).

Timothy Langlois, Ariel Shamir, Daniel Dror, Wojciech Matusik, and David IW Levin.

2016. Stochastic structural analysis for context-aware design and fabrication. ACM

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://arxiv.org/abs/1509.07164
https://doi.org/10.1145/1399504.1360641
https://www.gurobi.com
https://www.gurobi.com
https://doi.org/10.1145/3658194

14 • Baktash, Sharp, Zhou, Crane, and Jacobson

Transactions on Graphics (TOG) 35, 6 (2016), 1–13.
Zishun Liu, Juyong Zhang, and Ligang Liu. 2016. Upright orientation of 3D shapes

with convolutional networks. Graphical Models 85 (2016), 22–29.
Marco Livesu, Stefano Ellero, Jonàs Martínez, Sylvain Lefebvre, and Marco Attene. 2017.

From 3D models to 3D prints: an overview of the processing pipeline. In Computer
Graphics Forum, Vol. 36. Wiley Online Library, 537–564.

Lin Lu, Andrei Sharf, Haisen Zhao, Yuan Wei, Qingnan Fan, Xuelin Chen, Yann Savoye,

Changhe Tu, Daniel Cohen-Or, and Baoquan Chen. 2014. Build-to-last: Strength to

weight 3D printed objects. ACM Transactions on Graphics (ToG) 33, 4 (2014), 1–10.
Jacopo De Grossi Mazzorin and Claudia Minniti. 2013. Ancient use of the knuckle-bone

for rituals and gaming piece. Anthropozoologica 48, 2 (2013), 371–380.
David Moffatt. 1977. Pass the Piggies. https://winning-moves.com/product/pass-the-

pigs Dice game.

Marston Morse. 1934. The Calculus of Variations in the Large.
Przemyslaw Musialski, Thomas Auzinger, Michael Birsak, Michael Wimmer, and Leif

Kobbelt. 2015. Reduced-order shape optimization using offset surfaces. ACM Trans.
Graph. 34, 4 (2015), 102–1.

Przemyslaw Musialski, Christian Hafner, Florian Rist, Michael Birsak, Michael Wim-

mer, and Leif Kobbelt. 2016. Non-linear shape optimization using local subspace

projections. ACM Transactions on Graphics (TOG) 35, 4 (2016), 1–13.
BKA Ngoi and LEN Lim. 1996. Analysing the natural resting aspect of a component for

automated assembly using the energy envelope method. The International Journal
of Advanced Manufacturing Technology 12 (1996), 132–136.

Karl Pearson. 1895. VII. Note on regression and inheritance in the case of two parents.

proceedings of the royal society of London 58, 347-352 (1895), 240–242.

Jovan Popović, Steven M Seitz, Michael Erdmann, Zoran Popović, and Andrew Witkin.

2000. Interactive manipulation of rigid body simulations. In Proceedings of the 27th
annual conference on Computer graphics and interactive techniques. 209–217.

Romain Prévost, Moritz Bächer, Wojciech Jarosz, and Olga Sorkine-Hornung. 2016.

Balancing 3D Models with Movable Masses.. In VMV.
Romain Prévost, Emily Whiting, Sylvain Lefebvre, and Olga Sorkine-Hornung. 2013.

Make it stand: balancing shapes for 3D fabrication. ACM Trans. Graph. 32, 4, Article
81 (jul 2013), 10 pages. doi:10.1145/2461912.2461957

Jorrit Rouwe. 2024. Jolt Physics. https://github.com/jrouwe/JoltPhysics.

Patrick Schmidt, Janis Born, David Bommes, Marcel Campen, and Leif Kobbelt. 2022.

TinyAD: Automatic Differentiation in Geometry Processing Made Simple. Computer
Graphics Forum 41, 5 (2022).

Silvia Sellán, Yun-Chun Chen, Ziyi Wu, Animesh Garg, and Alec Jacobson. 2022. Break-

ing bad: A dataset for geometric fracture and reassembly. Advances in Neural
Information Processing Systems 35 (2022), 38885–38898.

Silvia Sellán, Jack Luong, LeticiaMattos Da Silva, Aravind Ramakrishnan, Yuchuan Yang,

and Alec Jacobson. 2022. Breaking Good: Fracture Modes for Realtime Destruction.

ACM Transactions on Graphics (2022).
Stephen Smale. 1961. On Gradient Dynamical Systems. Annals of Mathematics 74, 1

(1961), 199–206.

Yaroslav I Sobolev, Ruoyu Dong, Tsvi Tlusty, Jean-Pierre Eckmann, Steve Granick, and

Bartosz A Grzybowski. 2023. Solid-body trajectoids shaped to roll along desired

pathways. Nature 620, 7973 (2023), 310–315.
Ondrej Stava, Juraj Vanek, Bedrich Benes, Nathan Carr, and Radomír Mech. 2012. Stress

relief: improving structural strength of 3D printable objects. ACM Transactions on
Graphics (TOG) 31, 4 (2012), 1–11.

A. Van Oosterom and J. Strackee. 1983. The Solid Angle of a Plane Triangle. IEEE
Transactions on Biomedical Engineering BME-30, 2 (1983), 125–126. doi:10.1109/

TBME.1983.325207

Péter L Várkonyi and Gábor Domokos. 2006a. Mono-monostatic bodies: the answer to

Arnold’s question. Math. Intelligencer 28, 4 (2006), 34–38.
Péter L Várkonyi and Gábor Domokos. 2006b. Static equilibria of rigid bodies: dice,

pebbles, and the Poincaré-Hopf theorem. Journal of Nonlinear Science 16 (2006),
255–281.

Cédric Villani et al. 2009. Optimal transport: old and new. Vol. 338. Springer.
Lingfeng Wang and Emily Whiting. 2016. Buoyancy optimization for computational

fabrication. In Computer Graphics Forum, Vol. 35. Wiley Online Library, 49–58.

Tino Weinkauf, Yotam Gingold, and Olga Sorkine. 2010. Topology-based smoothing

of 2D scalar fields with C1-continuity. In Computer Graphics Forum, Vol. 29. Wiley

Online Library, 1221–1230.

Jun Wu, Lou Kramer, and Rüdiger Westermann. 2016. Shape interior modeling and

mass property optimization using ray-reps. Computers & Graphics 58 (2016), 66–72.
Juzhan Xu, Minglun Gong, Hao Zhang, Hui Huang, and Ruizhen Hu. 2023. Neural

Packing: from Visual Sensing to Reinforcement Learning. ACM Trans. Graph. 42, 6,
Article 267 (dec 2023), 11 pages. doi:10.1145/3618354

Qingnan Zhou, Julian Panetta, and Denis Zorin. 2013. Worst-case structural analysis.

ACM Trans. Graph. 32, 4 (2013), 137–1.

A Pseudocode

A.1 Tracing gradients
Here we write out the procedure described for tracing a given initial

orientation to a stable orientation. We assume that element classes

are identified as explained in the main paper.

Algorithm 1 TraceGradient(n̂0,H , c)
Input: A unit vector n̂0 as the initial orientation, A convex shape

H uniquely determined by a point set {𝑝1, 𝑝2, . . . , 𝑝𝑛} in R3,
A point c in R3 insideH determining the center of mass.

Output: A sequence of unit vectors N = {n̂0, n̂2, . . . , n̂𝑘 } where
n̂𝑖 , n̂𝑖+1 determines a great arc segment that is along the

gradient flow of𝑈 .

1: N← {n̂0} ⊲Initialize with the first orientation
2: elem← ElementWithNormal(n̂0) ⊲Get the unique face, edge,

or vertex that has n̂0 as its normal, prioritizing faces, then edges,
when the normal is shared.

3: n̂← 𝑛0
4: while elem is not stable face do
5: if elem is hinge-type then ⊲Hinge edge or face
6: elem← NextFace(elem) ⊲Face that elem hinge-rolls

onto
7: n̂← Normal(elem) ⊲A face normal
8: else ⊲ elem is a vertex, or a cartwheel-type edge/face.
9: elem← NextVertex(elem)
10: for elem𝑎𝑑 𝑗 ∈ AdjEdges(elem) do ⊲Neighboring edges
11: 𝑓 1, 𝑓 2← AdjFaces(elem𝑎𝑑 𝑗)
12: n̂𝑓 1, n̂𝑓 2 ← Normal(𝑓 1), Normal(𝑓 2)
13: n̂𝑛𝑒𝑥𝑡 ← RayArcInt(n̂★elem, n̂, n̂𝑓 1, n̂𝑓 2)) ⊲Move

along the gradient arc until elem’s Gauss image boundary
14: if n̂𝑛𝑒𝑥𝑡 ≠ 0 then ⊲Intersection; next normal found
15: n̂← n̂𝑛𝑒𝑥𝑡
16: N← N ∪ {n̂}
17: elem← ElementWithNormal(n̂)
18: break ⊲Don’t check other neighbor edges
19: end while
20: return N

The subroutine RayArcInt in Algorithm 2 is used for intersect-

ing an arc-ray that starts at n̂★ and move towards n̂; n̂𝑓 1, n̂𝑓 2 are
endpoints of the Gauss image of an edge (the two neighboring face

normals).

Algorithm 2 RayArcInt(n̂★, n̂, n̂1, n̂2)
Input: Unit vectors n̂★, n̂, n̂1, n̂2 ∈ R3
Output: A unit vector n̂𝑖𝑛𝑡 if the great arc segments (n̂★, n̂) and

(n̂1, n̂2) intersect, 0 otherwise.
1: d← �(n̂★ × n̂) × (n̂1 × n̂2) ⊲d is on the intersection of two great

circles containing the input arcs
2: if (d × n̂2) · (n̂1 × n̂2) ≥ 0 & (d × n̂1) · (n̂2 × n̂1) ≥ 0 then
3: n̂𝑖𝑛𝑡 ← d ⊲d inside the arc
4: if (−d× n̂2) · (n̂1 × n̂2) ≥ 0 & (−d× n̂1) · (n̂2 × n̂1) ≥ 0 then
5: n̂𝑖𝑛𝑡 ← −d ⊲−d inside the arc
6: return n̂𝑖𝑛𝑡

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

https://winning-moves.com/product/pass-the-pigs
https://winning-moves.com/product/pass-the-pigs
https://doi.org/10.1145/2461912.2461957
https://github.com/jrouwe/JoltPhysics
https://doi.org/10.1109/TBME.1983.325207
https://doi.org/10.1109/TBME.1983.325207
https://doi.org/10.1145/3618354

Putting Rigid Bodies to Rest • 15

A.2 Building the Saparatrix
Pseudo-code for building the Morse complex and finding the sepa-

ratrixes that form the boundaries of ascending manifolds:

Algorithm 3 BuildSeparatrix(H , c)
Input: A convex shape H uniquely determined by a point set

{𝑥1, 𝑥2, . . . , 𝑥𝑛} in R3, A point c in R3 insideH determining

the center of mass.

Output: A set of quadruples BN = {(n̂𝑖
1
, n̂𝑖

2
, 𝑓 𝑖
1
, 𝑓 𝑖
2
)}𝑖 where n̂𝑖

1
, n̂𝑖

2

are unit vectors and 𝑓 𝑖
1
, 𝑓 𝑖
2
are two stable faces. The great

arc connecting n̂𝑖
1
, n̂𝑖

2
is on the boundary of the basins of

attraction of stable faces 𝑓 𝑖
1
and 𝑓 𝑖

2
.

1: BN← {}
2: 𝑆𝐸 ← SaddleEdges(H)
3: for 𝑒0 ∈ 𝑆𝐸 do
4: (𝑓1, 𝑓2) ← AdjFaces(𝑒) ⊲Two faces neighboring 𝑒
5: 𝑓 ∗

1
← DestinedFace(𝑓1) ⊲Resting face starting from 𝑓1

6: 𝑓 ∗
2
← DestinedFace(𝑓2)

7: if 𝑓 ∗
1
= 𝑓 ∗

2
then ⊲Not dividing two different basins

8: break
9: n̂← n̂★𝑒0
10: n̂𝑛𝑒𝑥𝑡 ← 0
11: for 𝑝𝑖 ∈ AdjVertices(𝑒0) do ⊲two vertices adjacent to 𝑒
12: 𝑝 ← 𝑝𝑖
13: while 𝑇𝑟𝑢𝑒 do
14: if 𝑝 is maximum vertex then
15: n̂𝑛𝑒𝑥𝑡 ← n̂★𝑝
16: BN← BN ∪ (n̂, n̂𝑛𝑒𝑥𝑡 , 𝑓 ∗

1
, 𝑓 ∗
2
)

17: break
18: for 𝑒 ∈ AdjEdges(𝑝) do
19: 𝑓 , 𝑓 ′ ← AdjFaces(𝑒)
20: n̂𝑓 , n̂𝑓 ′ ← Normal(𝑓), Normal(𝑓 ′)
21: n̂𝑛𝑒𝑥𝑡 ← ArcsInt(n̂, n̂𝑣𝑒𝑟𝑡𝑒𝑥 , n̂𝑓 , n̂𝑓 ′)
22: if n̂𝑛𝑒𝑥𝑡 ≠ 0 then ⊲Intersection happens
23: BN← BN ∪ (n̂, n̂𝑛𝑒𝑥𝑡 , 𝑓 ∗

1
, 𝑓 ∗
2
)

24: n̂ = n̂𝑛𝑒𝑥𝑡
25: 𝑝 = OtherVertex(𝑒, 𝑝)
26: break
27: end while
28: return BN

B Inverse Convex Hulls
Here we detail our method for fitting a nonconvex shape into a

convex shape after the dice energy optimization. Given a convex

surfaceH∗, and a reference concave surface 𝑆0 and a given center

of mass c0. We aim find a surface 𝑆∗ that is the minimizer for the

following problem:

𝑆∗ = argmin

𝑆

d(𝑆, 𝑆0) (23)

s.t. ConvHull(𝑆) = H∗ (24)

c(𝑆) = c0 (25)

where 𝑑 (𝑆, 𝑆0) is a combination of surface energy often used for

elastic deformation problems, and we use it to measure how much

𝑆 and 𝑆0 look alike.

We find 𝑆∗ is two steps:

(1) Hull Fill: Find 𝑆 where ConvHull(𝑆) = H∗, and 𝑆 looks like
𝑆0.

(2) CoM Correction: Deform 𝑆 into 𝑆∗ such that c(𝑆∗) = c0,
while preserving its convex hull ConvHull(𝑆∗) = H∗.

B.1 Hull Fill
We start with a scaled 𝑆0 that is fully contained inH∗, and iteratively
solve the following optimization problem to obtain a sequence of

surfaces {𝑆𝑡 } that converge to 𝑆 . We deal with a soft version of

constraint 24 using a combination of Surface Closest Point Energy

and linear inequalities:

𝑆 = argmin

𝑆

𝜆𝐶𝑃𝐸𝐶𝑃 (𝑆,H∗) + 𝜆𝑚𝐸𝑚 (𝑆) + 𝜆𝑏𝐸𝑏 (𝑆) (26)

s.t. 𝑆 ⊆ H∗ (27)

Here 𝐸𝐶𝑃 is a Surface Closest Point Energy where the closest point

assignment between 𝑆 andH∗. For every vertex p ∈ H∗, denote its
closest point on 𝑆 by 𝐶𝑃 (p), then 𝐸𝐶𝑃 is given by:

𝐸𝐶𝑃 (𝑆,H∗) =
∑︁
p∈H∗

∥p −𝐶𝑃 (p)∥2 (28)

Note that𝐶𝑃 (p) could lie on a face, edge, or vertex of 𝑆 , so it can be

written as a linear combination of vertex positions of 𝑆 . The term

𝐸𝑚 (𝑆) is a conformal Membrane energy ([Hormann and Greiner

2000]) that uses 𝑆0 as reference, and similarly 𝐸𝑏 (𝑆) is a surface

Bending energy ([Grinspun et al. 2003]).

The feasible set in this problem is convex, since the constraints are

a set of linear inequality constraints corresponding to half-spaces

that bound H∗ (a convex surface). The goal is to get 𝐸𝐶𝑃 (𝑆,H∗)
close to zero, where convex hull of 𝑆 will beH∗ (satisfying constraint
24). We do this by increasing 𝜆𝐶𝑃 iteratively. The other terms ensure

that 𝑆 remains visually close to 𝑆0. We start with 𝑆0 as the initial

surface, and denote the deformed surface at every step by 𝑆𝑡 . We

use a quadratic approximation for the terms 𝐸𝑏 and 𝐸𝑚 at each step,

using 𝑆0 as the reference surface and 𝑆𝑡 as the deformed surface. The

closest point assignments for 𝐸𝐶𝑃 (in Equation 28) are also found

using 𝑆𝑡 as the current surface. This leads to solving a linearly

constrained quadratic program to obtain 𝑆𝑡+1. For the quadratic

approximation we use automatic differentiation (TinyAD library

[Schmidt et al. 2022]) to obtain the gradient and projected Hessian

of each energy term, and then we use a QP solver (Gurobi library

[Gurobi Optimization, LLC 2024]) to solve the resulting optimization

problem. Denoting 𝐸
deform

= 𝜆𝐶𝑃𝐸𝐶𝑃 (𝑆,H∗; 𝑆𝑡) + 𝜆𝑚𝐸𝑚 (𝑆, 𝑆0) +
𝜆𝑏𝐸𝑏 (𝑆, 𝑆0), and vertex positions of 𝑆𝑡 with x𝑡 :

x𝑡+1 = argmin

x

1

2

x𝑇 (�̃�
deform

)x + 𝑔𝑇
deform

x (29)

s.t. 𝐴H∗x ≤ 𝑏H∗ (30)

where �̃�
deform

and𝑔
deform

are projected Hessian and gradient vector

of 𝐸
deform

.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

16 • Baktash, Sharp, Zhou, Crane, and Jacobson

B.2 CoM Correction
In this step, we treat with constraint 25 softly and find a solution to

the following problem:

𝑆 = argmin

𝑆

𝜆CoM𝐸CoM (𝑆,H∗) + 𝜆𝑚𝐸𝑚 (𝑆) + 𝜆𝑏𝐸𝑏 (𝑆) (31)

s.t. ConvHull(𝑆) = H∗ (32)

where 𝐸CoM (𝑆, c0) simply measures the distance between center of

mass of 𝑆 and c0:

𝐸CoM (𝑆, c) = ∥c(𝑆) − c0∥2 (33)

However, dealing with the convex hull constraint (in 32) is not

straightforward and cannot be relaxed like the previous step. So

instead, we start with a surface that satisfies this constraint. Specifi-

cally we start with 𝑆 obtained from previous step (𝑆0 := 𝑆). Then we

iteratively minimize the energy in 31, in a sequence of surfaces 𝑆𝑡 ,

while always satisfying constraint 32; i.e. ConvexHull(𝑆𝑡) = H∗, ∀𝑡 .
For this task, we use a first-order method and only use the gradi-

ents of terms in 31, and similar to previous step, we increase 𝜆CoM
iteratively until 𝐸CoM goes to zero. We have the gradients for 𝐸𝑏
and 𝐸𝑚 from before, and derive the gradient for 𝐸CoM.

Denoting vertex positions of 𝑆 by x, we have:

∇𝑥𝑖𝐸CoM = 2

𝜕c
𝜕x𝑖

(
c(x) − c0

)
(34)

where
𝜕c
𝜕x𝑖 is a 3-by-3 sub-matrix of the Jacobian of c(x) correspond-

ing to vertex 𝑖 .

Since we look for low frequency deformations in this step, we

smooth out and diffuse these gradient vectors using Sobolev pre-

conditioning.

To preserve the convex hull of 𝑆𝑡 at every step, we simply weigh

the gradient vector at every vertex by its distance toH∗; vertices
on or close toH∗ barely move, while vertices deep insideH∗ can
have a larger displacement.

Denoting 𝐸 = 𝜆CoM𝐸CoM (𝑆,H∗)+𝜆𝑚𝐸𝑚 (𝑆)+𝜆𝑏𝐸𝑏 (𝑆), we finally
arrive at the following update rule:

x̃𝑡+1 = x̃𝑡 − 𝛼𝐷H∗ (𝐼 + 𝛾L)−𝑝∇𝐸 (35)

where x̃𝑡 is vertex positions of 𝑆𝑡 , 𝐷H∗ is a diagonal matrix with

𝑖’th entry being the distance of vertex 𝑖 fromH∗, and 𝛼 is the step

size found by line search.

ACM Trans. Graph., Vol. 44, No. 4, Article . Publication date: August 2025.

	Abstract
	1 Introduction
	1.1 Related work

	2 Algorithm
	2.1 Rolling as Energy Minimization
	2.2 Tracing a single path
	2.3 Categorizing all paths by constructing the Morse-Smale complex
	2.4 Tracing a Separatrix on the Gauss Map

	3 Manipulating the probabilities
	3.1 Differentiation
	3.2 Dice Energy
	3.3 Regularizers for Dice Energy
	3.4 Inverse Convex Hulls

	4 Evaluation
	4.1 Comparison to Simulation
	4.2 Design Aid

	5 Inverse Design
	5.1 Convex Dice
	5.2 Concave Dice

	6 Physical Experiments
	7 Limitations and Future Work
	Acknowledgments
	References
	A Pseudocode
	A.1 Tracing gradients
	A.2 Building the Saparatrix

	B Inverse Convex Hulls
	B.1 Hull Fill
	B.2 CoM Correction

